1. 发现兴趣相似的用户
通常用 Jaccard 公式或者余弦相似度计算两个用户之间的相似度。设 N(u) 为用户 u 喜欢的物品集合,N(v) 为用户 v 喜欢的物品集合,那么 u 和 v 的相似度是多少呢:
Jaccard 公式:
余弦相似度:
假设目前共有4个用户: A、B、C、D;共有5个物品:a、b、c、d、e。用户与物品的关系(用户喜欢物品)如下图所示:
如何一下子计算所有用户之间的相似度呢?为计算方便,通常首先需要建立“物品—用户”的倒排表,如下图所示:
然后对于每个物品,喜欢他的用户,两两之间相同物品加1。例如喜欢物品 a 的用户有 A 和 B,那么在矩阵中他们两两加1。如下图所示:
计算用户两两之间的相似度,上面的矩阵仅仅代表的是公式的分子部分。以余弦相似度为例,对上图进行进一步计算:
到此,计算用户相似度就大功告成,可以很直观的找到与目标用户兴趣较相似的用户。
2. 推荐物品
首先需要从矩阵中找出与目标用户 u 最相似的 K 个用户,用集合 S(u, K) 表示,将 S 中用户喜欢的物品全部提取出来,并去除 u 已经喜欢的物品。对于每个候选物品 i ,用户 u 对它感兴趣的程度用如下公式计算:
其中 rvi 表示用户 v 对 i 的喜欢程度,在本例中都是为 1,在一些需要用户给予评分的推荐系统中,则要代入用户评分。
举个例子,假设我们要给 A 推荐物品,选取 K = 3 个相似用户,相似用户则是:B、C、D,那么他们喜欢过并且 A 没有喜欢过的物品有:c、e,那么分别计算 p(A, c) 和 p(A, e):
看样子用户 A 对 c 和 e 的喜欢程度可能是一样的,在真实的推荐系统中,只要按得分排序,取前几个物品就可以了。